155 research outputs found

    Multi-ancestry genome-wide association study accounting for gene-psychosocial factor interactions identifies novel loci for blood pressure traits

    Get PDF
    Publisher Copyright: © 2020 The Author(s)Psychological and social factors are known to influence blood pressure (BP) and risk of hypertension and associated cardiovascular diseases. To identify novel BP loci, we carried out genome-wide association meta-analyses of systolic, diastolic, pulse, and mean arterial BP, taking into account the interaction effects of genetic variants with three psychosocial factors: depressive symptoms, anxiety symptoms, and social support. Analyses were performed using a two-stage design in a sample of up to 128,894 adults from five ancestry groups. In the combined meta-analyses of stages 1 and 2, we identified 59 loci (p value < 5e−8), including nine novel BP loci. The novel associations were observed mostly with pulse pressure, with fewer observed with mean arterial pressure. Five novel loci were identified in African ancestry, and all but one showed patterns of interaction with at least one psychosocial factor. Functional annotation of the novel loci supports a major role for genes implicated in the immune response (PLCL2), synaptic function and neurotransmission (LIN7A and PFIA2), as well as genes previously implicated in neuropsychiatric or stress-related disorders (FSTL5 and CHODL). These findings underscore the importance of considering psychological and social factors in gene discovery for BP, especially in non-European populations.Peer reviewe

    The combined effects of genetic risk and perceived discrimination on blood pressure among African Americans in the Jackson Heart Study

    Get PDF
    Both genomics and environmental stressors play a significant role in increases in blood pressure (BP). In an attempt to further explain the hypertension (HTN) disparity among African Americans (AA), both genetic underpinnings (selected candidate genes) and stress due to perceived racial discrimination (as reported in the literature) have independently been linked to increased BP among AAs. Although Gene x Environment interactions on BP have been examined, the environmental component of these investigations has focused more on lifestyle behaviors such as smoking, diet, and physical activity, and less on psychosocial stressors such as perceived discrimination

    Multi-Ancestry Sleep-by-SNP Interaction Analysis in 126,926 Individuals Reveals Lipid Loci Stratified by Sleep Duration

    Get PDF
    Both short and long sleep are associated with an adverse lipid profile, likely through different biological pathways. To elucidate the biology of sleep-associated adverse lipid profile, we conduct multi-ancestry genome-wide sleep-SNP interaction analyses on three lipid traits (HDL-c, LDL-c and triglycerides). In the total study sample (discovery + replication) of 126,926 individuals from 5 different ancestry groups, when considering either long or short total sleep time interactions in joint analyses, we identify 49 previously unreported lipid loci, and 10 additional previously unreported lipid loci in a restricted sample of European-ancestry cohorts. In addition, we identify new gene-sleep interactions for known lipid loci such as LPL and PCSK9. The previously unreported lipid loci have a modest explained variance in lipid levels: most notable, gene-short-sleep interactions explain 4.25% of the variance in triglyceride level. Collectively, these findings contribute to our understanding of the biological mechanisms involved in sleep-associated adverse lipid profiles

    Development and Validation of Risk Prediction Models for Cardiovascular Events in Black Adults: The Jackson Heart Study Cohort

    Get PDF
    Cardiovascular risk assessment is a fundamental component of prevention of cardiovascular disease (CVD). However, commonly used prediction models have been formulated in primarily or exclusively white populations. Whether risk assessment in black adults is dissimilar to that in white adults is uncertain

    Macaques vaccinated with live-attenuated SIV control replication of heterologous virus

    Get PDF
    An effective AIDS vaccine will need to protect against globally diverse isolates of HIV. To address this issue in macaques, we administered a live-attenuated simian immunodeficiency virus (SIV) vaccine and challenged with a highly pathogenic heterologous isolate. Vaccinees reduced viral replication by ∼2 logs between weeks 2–32 (P ≤ 0.049) postchallenge. Remarkably, vaccinees expressing MHC-I (MHC class I) alleles previously associated with viral control completely suppressed acute phase replication of the challenge virus, implicating CD8+ T cells in this control. Furthermore, transient depletion of peripheral CD8+ lymphocytes in four vaccinees during the chronic phase resulted in an increase in virus replication. In two of these animals, the recrudescent virus population contained only the vaccine strain and not the challenge virus. Alarmingly, however, we found evidence of recombinant viruses emerging in some of the vaccinated animals. This finding argues strongly against an attenuated virus vaccine as a solution to the AIDS epidemic. On a more positive note, our results suggest that MHC-I–restricted CD8+ T cells contribute to the protection induced by the live-attenuated SIV vaccine and demonstrate that vaccine-induced CD8+ T cell responses can control replication of heterologous challenge viruses

    Drug-gene interactions of antihypertensive medications and risk of incident cardiovascular disease: a pharmacogenomics study from the CHARGE consortium

    Get PDF
    Background Hypertension is a major risk factor for a spectrum of cardiovascular diseases (CVD), including myocardial infarction, sudden death, and stroke. In the US, over 65 million people have high blood pressure and a large proportion of these individuals are prescribed antihypertensive medications. Although large long-term clinical trials conducted in the last several decades have identified a number of effective antihypertensive treatments that reduce the risk of future clinical complications, responses to therapy and protection from cardiovascular events vary among individuals. Methods Using a genome-wide association study among 21,267 participants with pharmaceutically treated hypertension, we explored the hypothesis that genetic variants might influence or modify the effectiveness of common antihypertensive therapies on the risk of major cardiovascular outcomes. The classes of drug treatments included angiotensin-converting enzyme inhibitors, beta-blockers, calcium channel blockers, and diuretics. In the setting of the Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) consortium, each study performed array-based genome-wide genotyping, imputed to HapMap Phase II reference panels, and used additive genetic models in proportional hazards or logistic regression models to evaluate drug-gene interactions for each of four therapeutic drug classes. We used meta-analysis to combine study-specific interaction estimates for approximately 2 million single nucleotide polymorphisms (SNPs) in a discovery analysis among 15,375 European Ancestry participants (3,527 CVD cases) with targeted follow-up in a case-only study of 1,751 European Ancestry GenHAT participants as well as among 4,141 African-Americans (1,267 CVD cases). Results Although drug-SNP interactions were biologically plausible, exposures and outcomes were well measured, and power was sufficient to detect modest interactions, we did not identify any statistically significant interactions from the four antihypertensive therapy meta-analyses (Pinteraction &gt; 5.0×10−8). Similarly, findings were null for meta-analyses restricted to 66 SNPs with significant main effects on coronary artery disease or blood pressure from large published genome-wide association studies (Pinteraction ≥ 0.01). Our results suggest that there are no major pharmacogenetic influences of common SNPs on the relationship between blood pressure medications and the risk of incident CVD

    Single-Trait and Multi-Trait Genome-Wide Association Analyses Identify Novel Loci for Blood Pressure in African-Ancestry Populations

    Get PDF
    Hypertension is a leading cause of global disease, mortality, and disability. While individuals of African descent suffer a disproportionate burden of hypertension and its complications, they have been underrepresented in genetic studies. To identify novel susceptibility loci for blood pressure and hypertension in people of African ancestry, we performed both single and multiple-trait genome-wide association analyses. We analyzed 21 genome-wide association studies comprised of 31,968 individuals of African ancestry, and validated our results with additional 54,395 individuals from multi-ethnic studies. These analyses identified nine loci with eleven independent variants which reached genome-wide significance (P \u3c 1.25×10−8) for either systolic and diastolic blood pressure, hypertension, or for combined traits. Single-trait analyses identified two loci (TARID/TCF21 and LLPH/TMBIM4) and multiple-trait analyses identified one novel locus (FRMD3) for blood pressure. At these three loci, as well as at GRP20/CDH17, associated variants had alleles common only in African-ancestry populations. Functional annotation showed enrichment for genes expressed in immune and kidney cells, as well as in heart and vascular cells/tissues. Experiments driven by these findings and using angiotensin-II induced hypertension in mice showed altered kidney mRNA expression of six genes, suggesting their potential role in hypertension. Our study provides new evidence for genes related to hypertension susceptibility, and the need to study African-ancestry populations in order to identify biologic factors contributing to hypertension
    corecore